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Abstract. The effeet of current rectification in a metal plate, placed in a panllel magnetic field 
hu and i d i a t e d  by ndio waves of sufficiently large amplitude H, is investigated theoretically. 
On the basis of Pippard’s ineffectiveness concept, the equation for the induced magnetic field h 
inside the sample is obtained. The dependence h(ho) exhibits hysteresis behaviour for amplitudes 
‘H larger than a certain critical value H-. We show that on diminishing the plate thickness d, 
the induced field h decreases, whereas the critical amplitude H,, augments. On incrwing the 
amplitude H of the radio wave, the hysteresis loops h(hd for a thin plate converge to a limit 
curve determined by sample parameters: the skin depth 6 and the thickness d .  

1. Introduction 

For many years investigations of non-linear electromagnetic properties of solid-state plasmas 
have been of great interest. As a result of these investigations, it was established that many 
well known non-linear electrodynamic effects, associated with an electric field and existing 
in semiconductors, are not observed in normal metals. This is understood in terms of the 
fact that the electric field is always weak in metals, due to their high electrical conductivity. 
However, the same cause that inhibits the manifestation of common non-linear properties 
is responsible for the appearence of a new kind of non-linear effects in metals. Indeed, 
in pure metal samples, especially at low temperatures, the magnetic component of the 
electromagnetic field comes to the fore because of the high conductivity of pure metals. 
Thus, the Lorentz force determined by the magnetic field of a wave influences the shape 
of electron trajectories, and consequently the sample conductivity. This mechanism of 
non-linearity is called magnetodynamic. The first experimental reports on magnetodynamic 
non-linearity were presented in the papers [l] and [Z]. 

The magnetodynamic mechanism of non-linearity is very effective under conditions of 
the typical (for metals) anomalous skin effect, when the skin depth 6, is much smaller than 
the electron mean free path I and the radius of curvature R of the electron trajectories in 
the magnetic field of the wave, i.e., 

Here 71 and w are the amplitude and the frequency, respectively, of the radio wave, uo is 
the static conductivity of the metal, p~ is the Fermi momentum, e is the absolute value of 
the electron charge, and c is the speed of light in vacuum. 
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The effectiveness of the non-linearity mechanism is characterized by the ratio of the 
mean free path I to the electron-trajectory length in the skin layer, (8R6,)'/' (see review 
[9): 

b = 1/(8RS,)'" = (H/L) 'P  = 8cp&/e12. (2) 

The field corresponds to the value of the amplitude H when the bending of electron 
trajectories becomes significant and non-linear effects begin to be manifested. For pure 
metal samples, over the radio-wave frequency band (6, - cm) and at helium 
temperatures ( I  Y 0.1 cm), the field has a small value, OS-5 Oe. In the experiments, the 
value of the electromagnetic-wave amplitude 71 reaches a few tens or hundreds of Oersteds. 
For this reason, not only weak non-linearity (b  < I), but also strong non-linearity (b  >> 1) 
is experimentally realizable. 

Because of the magnetodynamic non-linearity, a great many non-linear phenomena 
can be observed in metals (see, for instance, 1 3 4 1  and references therein). Among these 
phenomena, the excitation of current states is one of the most notable. This is a singular 
hysteresis effect of rectification of a high-frequency current and of the appearence of the 
intrinsic magnetic moment of the sample. This effect was discovered in bismuth [7,8] and 
later observed in other metals [9-11]. In the experiments, pure samples were irradiated 
by radio waves (o 1- l(r106 s- I )  of sufficiently large amplitude (3t z 1-103 Oe). The 
waves generated a closed constant current in the metal, which induced a constant magnetic 
field h and, hence, a magnetic moment M = h/47r of the sample (figure I ) .  In order to 
excite the current states, a weak constant magnetic field ho should be applied parrallel to 
the magnetic field of the radio wave H .  Nevertheless, the magnetic moment as a function 
of ho exhibits a hysteresis behaviour and in the case of developed non-linearity (b > 1) i t  
may remain finite even when ho vanishes. The effect of excitation of current states has an 
excitation threshold: hysteresis loops h(ho) are formed only when the amplitude 71 exceeds 
the critical value Xc,, which is of the order of a few Oersteds according to the experiments. 

d / 2  

- d / 2  

Figure 1. Schematic representation of the ex- 
perimental geometry. In. is the rectified current, 

- :TIre: I ho and h are the external and the induced mag- 
netic fields respectively, 7f and o are the amp& 
tude and the frequency. respectively. of the radio 
wave. and 6 is the characteristic sldn depth. 

31, 

The mechanism of current rectification was suggested in [12]. Here it was noted that 
the non-uniform magnetic field in the metal, which determines the dynamics of electrons, is 
the sum of the magnetic field H(x,  t )  of the wave and the external field ha (ho 11 H(x,  t ) ;  
the x axis coincides with the direction of radio-wave propagation). The character of the 
electron movement depends completely on the existence of a plane x = x&) i n  the sample, 
where the total magnetic field H + ho becomes zero. In the time intervals when this plane 
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is present, the spatial distribution of the total magnetic field alternates in sign. As result, a 
group of trapped electrons, which is specific only for the non-linear regime, appears. The 
trajectories of these electrons wind around the plane x = x g ( f )  precisely in the vicinity of the 
sample boundaries. Consequently, during the whole mean free time, the trapped electrons 
interact with the electromagnetic field in the metal and determine the sample conductivity. 
When the plane x = xo is absent, the trapped electrons disappear and, therefore, the metal 
conductivity is significantly diminished. The changes of the electron conductivity occurring 
in each wave period lead to the effect of current rectification and to the induction of a 
constant inhomogeneous magnetic field h(x). The induced field h(x)  varies over distances 
of order 6,  from zero at the metal boundaries (h(+d/2) = 0, see figure 1) to its maximum 
value at the middle of the current loop. 

Until now, the theory of current states has been constructed only for the case of samples 
having infinite thickness [3]. Within the framework of this theory the threshold character 
of current state generation was established and the threshold amplitude of the exciting 
radio wave was calculated. In addition, the dynamics of development of current state 
hysteresis loops was investigated. In particular, it was found that, with increasing radio- 
wave amplitude 'H, the dependence of the induced magnetic field h on the external magnetic 
field ha tends to a universal function, defined by 'H and independent of other task parameters. 
Nevertheless, in experimental conditions the sample thickness d is always finite. Moreover, 
in some experimental works d only just exceeds the skin depth 6 (see, for instance, [ I l l  
and [13]). In these and other works the measured values of the threshold amplitudes 'Her 
turned out to be notably larger than theoretically calculated ones. In addition, there are 
no experiments which would indicate the coincidence of the hysteresis loop h(h0) with the 
predicted universal curve. These facts can be explained by the theory, taking into account 
the finiteness of the sample thickness. The present work is devoted to formulating such a 
theory. 

The next section contains the foundation of the theory based on the ineffectiveness 
concept in the non-linear electrodynamics of metals. In section 3 we calculate the induced 
magnetic field h for a finite plate. Here the variations of the dependence h(ho) ,  and of the 
threshold amplitude 'H,,, with diminishing thickness d are analysed. 

2. Formulation of the problem 

Let us analyse the bilateral excitation of a metal plate, having thickness d by a radio wave 
with amplitude 'H and frequency o. The x axis is oriented perpendicular to the plate 
boundaries and the plane x = 0 is placed in the middle of the plate. The external constant 
and homogenous magnetic field ho is applied along the z axis (figure 1). The  magnetic 
field H of the radio wave in the metal is collinear with b. 

It is well known that electromagnetic waves propagate themselves in a metal practically 
perpendicular to its surface, independent of the incidence angle. According to the chosen 
geometry, Maxwell's equations can be  expressed as follows: 

(3) - a H ( x ,  t ) / a x  = (4n/c) j (x ,  f )  a ~ ( x ,  t ) / a x  = - ( ~ / c ) a ~ ( x ,  t ) / a t .  

The boundary conditions for these equations are 

H ( f d j 2 ,  t )  = 'Hcoswt. (4) 

Hence, the magnetic field H ( x ,  t )  should be an even function with respect to x while the 
electric field E ( x ,  t )  is odd function. 
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Solving the system of equations (3) we can calculate the induced magnetic field h(x)  
which is equal to the value of H ( x ,  t )  averaged over the wave period k / o :  

h ( x )  = ( H f x ,  t ) )  = - 6"" dt H ( x ,  t). 
2lr 

The mean value (over the plate thickness) of the induced magnetic field, 

1 rd /2  

(5 )  

is the quantity measured in the experiments Therefore, we shall calculate and analyse this 
quantity. 

In order to solve analytically the system of equations (3) we shall find the non-linear 
relation between the current density j ( x ,  t )  and the electromagnetic field in the metal plate 
with the aid of the Pippard's ineffectiveness concept. This method was extremely useful for 
the case d + 00 13,141. The ineffectiveness concept is based on the fact that the anomalous 
skin effect involves only a small fraction of electrons, which are called effective. Their 
Conductivity ucff can be estimated by using the simple formula 

where Nee is the number of effective electrons arriving at the skin layer, r is the time of their 
interaction with the electromagnetic field in this layer, and m symbolizes the electron mass. 
As a consequence of the spatial dispersion, the conductivity ucff turns out to be dependent 
on the skin depth 8 and, thus, Maxwell's equations (3) can be transformed into an equation 
for S. However, in the non-linear regime the conductivity of the effective electrons depends 
not only on 8 but also on the time t .  For this reason, the Pippard ineffectiveness concept 
has to be generalized for the non-linear case. Below, we shall deal with this generalized 
model. 

Firstly, we must separate space and time variables in (3). The expansion into a Fourier 
harmonic series in of does not help since all the harmonics in the sample, under developed 
non-linearity, have practically the same order of magnitude and strongly interact with one 
another. It is much more convenient to write the electric and magnetic fields in the metal 
as 

The quantities E,,(@), 8(") and c(@) will be henceforward determined from Maxwell's 
equations (3), and the coefficients Hn, which are independent of time, from the boundary 
conditions (4). In view of the periodicity in time of the fields (8). the function t(@) must 
satisfy the condition 

Furthermore, t(@) ought to be continous, monotonic, and single valued so that the set of 
functions exp[-inc(@)] in (8) will be complete. 
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As in the representation (a), the current density of conduction electrons can be expressed 
in the form 

The conductivity U(" ) (@)  is determined by distinct electron groups depending on the 
phase of the exciting radio wave. If the wave amplitude is larger than the external magnetic 
field, 

ho < 'H (11) 

there exists a time interval in each wave period 2z/o when the following inequality is 
satisfied 

[ ' H c o s ( ~ ~ )  + ho](h -I- ho) 4 0. (12) 

During this time the spatial distribution of the total magnetic field alternates in sign and the 
conductivity U(")(@) represents the sum 

(13) 

Here, U,$; is the conductivity of trapped electrons mentioned in section 1 (see also 
figure 2(a)). Let us estimate this value using equation (7). The time that the trapped 
electron stays in the skin layer in one period of its twisted motion is of the order of 
so = ( R S ( n ) ) l P / v ~  (VF  is the electron Fermi velocity). Such electrons have a momentum 
component normal to the metal surface lprl Y p,@')/R)'/', and Nefi turns out to be equal 
to N(S(")/R)'/ '  ( N  is the electron density). We must now take into account the repeated 
return of the trapped electrons to the skin layer. In the quasistatic situation, 

= neap (4 + 05'. 

0 << v (14) 

it is not necessary to allow the change of phase of the electromagnetic wave and the 
probability of the next return in sequence is equal to exp(-ZvTuq). Therefore, the 
estimation (7) for trapped electrons gives 

In this formula v is the frequency of bulk collisions, and 2TmP is the characteristic value 
of the period of the trapped electrons: 

2Teap = (bv)-"H/ lho t hi. (16) 

The quantity 6 is the non-linearity parameter defined in section 1 (equation (2)). The 
presence of the factor of two in front of the summation sign in equation (15) is due to 
the fact that the time of the 'first' sojourn in the skin layer turns out to be half as large 
as that of the succeeding ones. Note that the spatial dispersion in the conductivity (15) is 
taken into account by the factor 6'") ' /1 which reflects the fact that not all electrons, but only 
those present in the skin layer interact with the electromagnetic field. The quantity 



\ ."" I 

Figure 2. Trajectories of trapped (I), 
_ - -  V--\\- I / \ - skipping (2). and l a m o r  (3) electrons 

in a sign-Atemating (a) nnd constant (b)  
- d / Z I  tohl magnetic field. 

coth(uT,,) in the expression for the conductivity of trapped electrons is related to the 
probability of their multiple returns to the skin layer [3]. Formula (15) is valid when 

36 d ,  (17) 

In this case the trapped electrons from one skin layer cannot pass to another skin layer (see 
figure 2(a)). 

The second term in the right-hand side of equation (13) denotes the conductivity of 
so-called skipping electrons. Such electrons move along the sample boundaries, remaining 
inside the skin layer and undergoing collisions with the metal surface (see figure 2). Their 
number N,n coincides with the number of trapped electrons. For diffuse reflection from the 
boundaries of the plate, the time T of skipping-electron interaction with the electromagnetic 
field in the skin layer is so. So, the conductivity U$" of skipping electrons is given by the 
following formula: 

UP) = u0s(n) /1 .  (18) 

During another part of the wave period 2x/w,  when the inequality (12) changes for 
the opposite one, the group of trapped electrons disappears. In this situation a new group 
of so-called Larmor electrons together with the skipping electrons contributes to the metal 
conductivity: 

o(n) = G L t S '  (n) (19) 

Unlike the trapped electrons, the Lamor ones do not return to the skin layer because the 
spatial distribution of the total magnetic field has a constant sign. After leaving the skin 
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layer, the Larmor electrons continue moving into the bulk of the sample along the Larmor 
arc in the constant magnetic field h + ho (see figure 2(b)). If the characteristic radius R of 
the Larmor arc is larger than the mean free path [, 

R > I  (20) 

the conductivity of Larmor electrons is of the same order as that of the skipping ones (18). 
As a result, the total time-dependent conductivity of all electron groups can be written 

in the form 

~(~'(4) = 2 ~ o ( 8 " ) / l ) S ( I $ )  S(@) = 1 +(YO[-(XCOSI$ + ha)/@ +ho)l 
(21) 

(Y = (exp[(blr71)-'] - l]-' 

Here O ( x )  is the Heaviside function and the quantity 01 represents the relative change in the 
conductivity at the moments when the group of trapped electrons appears and disappears. 

i = ( h  + ho)/X. 

3. Equation for the induced magnetic field 

Let us substitute the expressions for the fields E @ ,  L ) ,  H(x,  t) (8), the current density 
j ( x ,  t )  (lo), and the conductivity a(")(+) (21) into Maxwell's equations (3). We obtain the 
function 

and the quantity a("): 

Here and below the value 6 ,  differs from equation (1) by the factor (3~c/8)l/~.  This 
difference is connected with the fact that here we construct a theory based on the 
ineffectiveness concept. It is well known that such theories give correct results to within 
real-valued positive factors of the order of unity. According to equations (8), (10) and 
(21)-(23), the amplitudes of the electric and magnetic fields are related by the formula 

E , ( @ )  = [inw8(")/cpS(I$)]Hn. (24) 

The coefficients H,, must be found from the boundary condition (4). Thus, 

The expression (25) corresponds to an expansion of the function X c o s @  into a series in 
the complete set of functions exp[-in{(@)]. These functions are orthogonal in the interval 
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0 < @ < 2n with weight a<(@)/&$ = I/pS@). For this reason, the series coefficients H, 
are defined as follows: 

N M Makurov et a1 

The formula (8) for the magnetic field H ( x ,  t )  together with equations (5) and (6) leads 
to an equation for the mean (over the plate thickness) induced magnetic field h,  which can 
be written in the form 

Taking into account the fact that 6" = CO, it is convenient to separate the term with 
n = 0 in (27), this being equal to Ho. Due to the fact that this term coincides with the 
value of h calculated for the case d --f 00 131, we shall symbolize it as h,  E Ho. Then, 

The second term in the right-hand side of equation (28) takes into account the finiteness 
of the sample thickness. We shall consider this term as a linear function of 6/d because the 
factors tanh(d/26'")) are not in practice different from unity under condition (17). 

After calculating the integrals with respect to @ in (28), the equation for the induced 
magnetic field can be rewritten as 

K = (1 -a2)"*signE./~fi(I +or-') - (S./d)A (29) 

where we have introduced the notation 

K =h/'H a =ho/ 'H 

Here the quantities 

SI = 1 + a( l  - signE)/2 and S, = 1 + cu(l + signi)/2 (31) 

coincide with the values of S(@)(21) in the intervals -p < @ < p and p < @ < 2rr - 0 
respectively. 

The equation of the induced field K (29) was numerically solved for different values of 
the non-linearity parameter b. The results of this calculation for a plate of finite thickness 
and for the case S fd = 0 are shown in figure 3. In this figure we can see that the mean value 
of the induced magnetic field h for a plate of finite size is smaller than h,. Figure 3 also 
shows that if the parameter b does not exceed a certain critical value b, then the dependence 
K ( U )  (or h(h0)) is single valued. For b = b,, points with vertical tangents appear on the 
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b b = l l  

b=zoo T-----J 
-1 1 -1 1 

Figure 3. Dynamics (a)<d) of evolution of current-state hysteresis (h(h0)) with increasing non- 
l i n a i t y  parameter b in the case of diffuse reflection of electrons from the surface for S,/d = 0 
and for S,/d = 0.1. 

curves ~ ( 0 ) .  The instability of the current state on the interval between the points, where 
a x p a  = CO, originates jumps in K(a) at these singular points. Thus, for b > b,, the K(U) 
are not single valued and hysteresis loops of the induced magnetic field are formed. 

Let us analyse the dependence of the critical value b,, on the thickness d. In figure 3(b)  
the functions K ( U )  with b = 6 are shown at two different values of &/d. It is clearly 
seen that the dependence ~ ( a )  is multiple valued for S,/d = 0, i.e. hysteresis takes place. 
However, K(a) is single valued for 6,/d = 0.1, and hysteresis is absent. This means 
that the finiteness of the plate thickness leads to the shift of the current-state excitation 
threshold to larger values of the non-linearity parameter b (of the incident wave amplitude 
E). This conclusion is confirmed by the direct numerical calculation of the quantity b,, as 
a function of 6,/d using equation (29). The corresponding plot is presented in figure 4. 
It is noteworthy that equation (29) for the induced magnetic field h allows us to study 
the dependence b,,(S,/d) by an analytical method too. When b = b,,, the ~ ( a )  curve 
has jumps at two points (+aw, +xu) where the equalities aa/& = 0, aZa/aK2 = 0 are 
satisfied. These two relations together with equation (29) form a system which allows us 



7478 N M Makarov et a1 

100 Figure 4. Depdence of the critical value of 
33 Lhe non-linearity parameter on the ratio 8. f d ,  0 00 

W d  

to determine the ‘critical’ values a,,, K- and b,: 

7C[(1 +a-’) - i] = ( 1 / K ) ( l  - 3’ / ’Sa/d)  

a ( ~ / i ? ) ~ ( l  +a-’) = b(1 - 3’/’8,/d) 

( ~ / z ) ( l +  1/2bi) = 1. 

Here we have taken into account the fact that Q ,  and K~~ are very small ( Q ~  << 1, K,, << I), 
and A (30) with accuracy to 

:(I +a-’)-’ IT iexp(-2) (< I 

A = ( 3 ’ / ’ / 7 C ) f f j ~ ~ ’ ~  2 3lP/[a(l + CY-’) - ~ / 2 ] .  

(33) 

is given by 

(34) 

The solution of the system (32) may be expressed in the following form 

Here, the quantities a,(O), ~ ~ ~ ( 0 ) .  and b,,(O) determine the hysteresis threshold of the current 
states in an infinite metal plate and satisfy the system (32) with S,/d = 0. These quantities 
are approximately equal to 

a,(O) = 0.055 ~ ~ ~ ( 0 )  = 0,066 6,,(O) = 5.00. (36) 

Thus, the consideration of the finite size of the sample leads to the augmenting of the 
critical value 6, and to the displacement of the critical points (&a,, 3 ~ ~ ~ )  to the coordinate 
origin. Note that the analytical result (35) for 6,,(6,/d) coincides with the numerically 
obtained plot (figure 4) with good accuracy (the relative deviation does not exceed 2%). 

It is of special interest to study the case of strong non-linearity because in the limit 
b CO an explicit dependence of h on ho is obtained. Due to the fact that the dependence 
h(h0) has central symmeby, we can analyse only that part of the hysteresis loop where 
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s i g n i  = 1 ( h  > 0). With b + 00 (a + m), the quantity p (22) is equal to p / x  and 
equation (29) for the induced field ( K  = h / X )  gives 

where B = cos-'(-a) and < = <(f) 
We can see that in the case 6,Jd = 0 the limit curve K ( U )  has universal character. 

Nevertheless, this result is not valid for a plate of finite thickness since the dependence 
K(a) (see equation (37)) contains an electrodynamic characteristic of the metal (6,) together 
with the plate thickness d. 

1.432; < ( x )  is the Riemann zeta function. 

4. Conclusion 

The present investigation demonstrates that the magnetodynamic non-linearity mechanism 
leads to the effect of RF current rectification (effect of current state excitation) in metal plates 
of finite thickness. This effect is attributed to the periodical appearance and disappearance 
of a group of trapped electrons in the metal sample. The current state excitation manifests 
itself as a hysteresis dependence of the intrinsic magnetic moment of the plate on the external 
magnetic field. This phenomenon arises when the radio-wave amplitude exceeds a certain 
threshold value XCr. According to equations (2) and (33, the value 71, depends on the 
parameters of the metal medium, radio wave frequency, temperature, and also on the plate 
thickness: 

XCr OL (cpF6,/e12)(1 - 3L/zS,/d)-2. (38) 

With decreasing sample thickness d ,  the threshold of the current state generation shifts to 
large amplitudes of the incident wave. So, the smaller the sample thickness, the weaker is 
the current state effect. 

It should be mentioned that the finiteness of the plate thickness modifies the frequency 
dependence of the threshold amplitude 31,. As follows from equation (38), this dependence 
will differ from the Kcr cx d ' l 3  law, which is valid when d + W. Such deviations 
were observed in experiments [11,13], carried out under conditions S zz d. Unfortunately, 
we cannot compare the theoretical and experimental results because of the lack of 
comprehensive information on the dependence XCr(co), measured in I l l ]  and [131. To 
test our predictions it would be expedient to measure this dependence for a sample with 
diffuse surface in the case S _N d once more and to compare the results with the formula 
(38). 

Note, that the inequality (17) plays an important role in our theoretical consideration. 
In anomalously thin films or at very low frequencies, when the inequality (17) is not valid, 
the number of trapped electrons noticeably decreases. Simultaneously, the electromagnetic 
field 'x-rays' the sample, and the current state vanishes. 
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